Pilot Testing of Zero Liquid Discharge (ZLD) Technologies Using Brackish Ground Water for Inland Desert Communities

Renee Morquecho, Ph.D., Tom Mulvihill – Indian Wells Valley Water District

Andrew Wiesner, Adam Zacheis, Ph.D., P.E., and Graham Juby, Ph.D., P.E. – Carollo Engineers

Presentation Outline

Project Costs

Project Background

Pretreatment

Reverse Osmosis

Filename.pp

The Indian Wells Valley Water District is Located in the Mojave Desert

Influent Water Characteristics Present Challenges to Desalting

Well Water Quality

- •pH = 7.1
- •TDS = 1500 mg/L
- •Hardness = 500 mg/L as $CaCO_3$
- •Calcium = 140 mg/L
- •Sulfate = 500 mg/L
- •Silica = 50 mg/L
- •Silt Density Index = 1.0

Contaminants of Concern

- Iron = 40 μ g/L
- •Manganese = $46 \ \mu g/L$
- •Arsenic = $6 \mu g/L$
- •Selenium = $40 \ \mu g/L$

Despite the Many Challenges, Potable Water Can Be Obtained by a Zero Liquid Discharge Treatment Train

Pilot Project Objectives

1. Demonstrate feasibility of selected treatment train.

2. Demonstrate primary RO and secondary EDR can achieve predicted recovery with minimal fouling.

Filename.ppt

Pretreatment

Project Costs

Project Background

Pretreatment

Reverse Osmosis

Filename.pp

Pretreatment Can Effectively Remove RO Constituents of Concern

- •Fe/Mn Removal
- •Granular Media Filtration
 - •Filtronics FV-03 Electromedia I

Filename.ppt

Pretreatment Can Effectively Remove RO Constituents of Concern

Reverse Osmosis

Project Costs

Project Background

Pretreatment

Reverse Osmosis

Filename.pp

The RO Unit was Operated for Over 4,000 Hours

The RO Process Can Operate at High Recoveries

The RO Process Produces a Low Total Dissolved Solids (TDS) Product

The RO Process Can Operate with Minimal Fouling

Reversible RO Configuration Has the Potential to Increase Recovery and Decrease Membrane Fouling

Reversible RO Configuration Has the Potential to Increase Recovery and Decrease Membrane Fouling

System Normalized Permeate Flow - Reversible Operation vs. Conventional Operation

1st Stage Normalized Permeate Flow -Reversible Operation vs. Conventional Operation

2nd Stage Normalized Permeate Flow -Reversible Operation vs. Conventional Operation

RO Concentrate Silt Density Index (SDI) Indicates Particle Removal After Flow Reversal

Electrodialysis Reversal

Project Costs

Project Background

Pretreatment

Reverse Osmosis

Electrodialysis Reversal

Filename.ppt

The EDR was Operated Continuously for Over 1,600 hours

Filename.pp

Reduced RO Recovery to Meet EDR Feed Requirements

EDR can Effectively Remove TDS from the RO Concentrate

EDR can Achieve High Recoveries

EDR Performance has been Stable

EDR Performance has been Stable

RO Primary Desalting and EDR Secondary Desalting can Achieve High Overall Recovery

RO Primary Desalting and EDR Secondary Desalting can Produce a Low TDS Product

Project Costs

Project Costs

Electrodialysis Reversal

Project Background

Pretreatment

Reverse Osmosis

Filename.ppt

Limiting the Volume of Brine for Final Treatment Reduces Cost

	Reverse Osmosis	Concentration	
Capital – 1 mgd	\$2 million	\$22 million	
Power (kWh/1000 gal)	2.2	90	

Filename.ppt

Impact of Overall Recovery is Significant – Example: 1-mgd Plant

Limiting the Volume of Brine for Final Treatment Reduces Cost – Full-Scale Facility at 2.7 mgd

	Capital Cost (MM\$/yr)	O&M Cost (MM\$/yr)	Total Cost (MM\$/yr)
RO + BC	2.8	3.7	6.5
RO + EDR + BC	2.4	2.6	5.0

Summary and Conclusions

1. Selected treatment train is feasible.

2. Primary RO and secondary EDR can achieve predicted recoveries.

3. The reversible function has potential to improve RO performance, but additional testing is needed.

Filename.pp

Acknowledgements

- California Department of Water Resources (Chapter 6(a) of Proposition 50)
 - Staff Indian Wells Valley Water District

Questions?

awiesner@carollo.com

Engineers...Working Wonders With Water**

Comparing Water Costs Indicates that Costs are Reasonable Given Water Quality and Inland Location

